THE MONISMITH LECTURE ESTABLISHED BY ASCE GEO-INSTITUTE PAVEMENTS COMMITTEE

Carl L. Monismith, Dr. Eng., P.E. The Robert Horonjeff Professor of Civil Engineering - Emeritus

Director Emeritus Pavement Research Center Institute of Transportation

University of California Berkeley

INTERNATIONAL CONFERENCE ON THE STRUCTURAL DESIGN OF ASPHALT PAVEMENTS

AUGUST 20-24, 1962

UNIVERSITY OF MICHIGAN ANN ARBOR, MI

M-E FLEXIBLE PAVEMENT DESIGN: CHALLENGES AND ISSUES

Marshall R. Thompson, Ph.D., P.E. Professor Emeritus

Department of Civil Engineering University of Illinois @ U-C

AASHO ROAD TEST DECISION TIME

DEFLECTION OR SN ???

THE AASHO ROAD TEST - REPORT 5 PAVEMENT RESEARCH SPECIAL REPORT 61E

- "The performance of the flexible pavements was predicted with essentially the same precision from load-deflection data as from load-design information." (SN)
- "Deflections taken during the spring when the subsurface conditions were adverse gave a better prediction of pavement life than those taken in the fall."
- "There was high degree of correlation between deflection and rutting."

1959 SPRING NORMAL DEFLECTIONS LOG $W_{2.5}$ = 9.4 + 1.32 LOG L – 3.25 LOG d LOG $W_{1.5}$ = 10.18 + 1.36 LOG L – 3.64 LOG d

L – Axle Load (kips)

d – deflection (mils)

AASHO ROAD TEST

Log W_{2.5}

AASHO ROAD TEST

SOME EARLY M-E DESIGN EFFORTS ANN ARBOR CONFERENCE – 1962

ASPHALT INSTITUTE – AIRPORT PAVEMENTS ANN ARBOR CONFERENCE - 1972

> SHELL PAVEMENT DESIGN MANUAL (ANN ARBOR CONFERENCE – 1977) (PUBLISHED – 1979)

SOUTH AFRICAN PROCEDURE (ANN ARBOR CONFERENCE – 1977)

ASPHALT INSTITUTE : MS-11 1981

1986 AASHTO GUIDE - PURSUE M-E

NCHRP 1-26 (1987) - NCHRP 1-37-A (1998) AASHTO M-E (2007)

AASHTO Ware Pavement M-E (2013)

OTHER USA / INTERNATIONAL EFFORTS (IL DOT – 1989 – FULL-DEPTH HMA)

M.W. Witczak Staff Engineer @ Asphalt Institute

"Design of Full-Depth Asphalt Airport Pavements"

3rd International Conference on the Structural Design of Asphalt Pavements London – 1972

ASPHALT INSTITUTE MS-11 – Third Edition - 1987 Thickness Design – Asphalt Pavements for Air Carrier Airports

ASPHALT INSTITUTE M-E * 1977: INITIATED M-E EFFORTS

* 1981: MS-1 THICKNESS DESIGN- ASPHALT PAVEMENTS FOR HIGHWAYS AND STREETS DAMA - ELP COMPUTER PROGRAM

RESILIENT MODULI INPUTS

FOR PRACTICAL

MECHANISTIC PAVEMENT DESIGN

1999 TRB Resilient Modulus and Mechanistic Pavement Design: Are We There yet??

FINE-GRAINED SOILS

"STRESS SOFTENING"

ARITHMETIC MODEL - UOFIL - IL DOT

THE ASPHALT INSTITUTE MS-11 – Third Edition- 1987 Modulus @ Deviator Stress of 6 psi

ARITHMETIC MODEL

SEMI-LOG MODEL LOG $E_{Ri} = a - (b * 6_D)$

SEMI-LOG MODEL

AASHTO M-E

DEGREE OF SATURATION EFFECTS

FREEZE-THAW EFFECTS

 \mathbf{E}_{Ri} **INPUTS**

* E_R TESTING

* FWD & B/C (PEDOLOGY - SOIL SERIES)

* ESTIMATES - STRENGTH (Q_U , CBR, DCP) - σ/ϵ (PURDUE) - % CLAY/PI (PEDOLOGY - SOIL SERIES)

***TYPICAL VALUES**

SUBGRADE VARIABILITY

* COVs >> 50% COMMON FOR FWD

BACKCALCULATED MODULI !!!

* LAB TESTING VARIABILITY ???

ILLI-PAVE DEFAULT SUBGRADE S

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Estimating Stiffness of Subgrade and Unbound Materials for Pavement Design

A Synthesis of Highway Practice

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

A. J. PUPPALA 2008

SUBGRADE MODULUS = ???

GRANULAR MATERIALS

"STRESS-HARDENING"

86 AASHTO GUIDE

GRANULAR MATERIAL MODULI ARE STRESS DEPENDENT

 $\mathbf{M}_{\mathbf{R}} = \mathbf{K}_{1} \ \mathbf{\Theta}^{\mathbf{K}2}$

86 AASHTO GUIDE TYPICAL THETA MODEL PARAMETERS

able 2.3	Typical N materials	values for k_1 and k_2 for us s ($M_R = k_1 \ominus k_2$).	nbound base and subb			
(a) Base						
Moistu Conditio	re on	k ₁ *	. k ₂ *			
Dry		6,000 - 10,000	0.5 - 0.7			
Damp		4,000 - 6,000	0.5 - 0.7			
Wet		2,000 - 4,000	0.5 - 0.7			
		(b) Subbase	4			
Dry		6,000 - 8,000	0.4 - 0.6			
Damp	•	4,000 - 6,000	0.4 - 0.6			
W/ot		1,500 - 4,000	0.4 - 0.6			

Moisture State	Equation	
Dry	80000 ^{0.6}	
Damp	40000 ^{0.6}	
Wet	32000 ^{0.6}	

AASHTO BASE

Moisture State	Developed Relationship	
Damp	$M_{R} = 5400 \Theta^{0.6}$	
Wet	$M_{R} = 4600 \Theta^{0.6}$	

AASHTO SUBBASE

Rada, G. and M.W. Witczak. "Comprehensive Evaluation of Laboratory Resilient Moduli Results for Granular Materials." Transportation Research Record 810, 1981. ALL DATA (271 Data Points) LOG K = 4.657 –1.807*n

Rada, G. and M.W. Witczak. "Comprehensive Evaluation of Laboratory Resilient Moduli Results for Granular Materials." Transportation Research Record 810, 1981.

LOG K = A + b*n (271 Data Points) A's and b's for the various materials

86 AASHTO GUIDE RECOMMENDED THETA VALUES (psi) BASE COURSE

Asphalt	Roadbed Soil Resilient Modulus (psi)			
Concrete Thickness (inches)	3,000	7,500	15,000	
	(1)。·發行總法於「一個)	ti de la francia de la composición de l		
Less than 2	20	25	30	
2 - 4	10	15	20	
4 - 6	5	10 · · · · · · · · · · · · · · · · · · ·	15	
Greater than 6	5	5	5	
86 AASHTO GUIDE RECOMMENDED THETA VALUES (psi) SUBBASE

Stress states (θ) which can be used as a guide to select the modulus value for subbase thicknesses between 6 and 12 inches are as follows:

Asphalt Concrete Thickness (inches)	Stress State(psi)	
less than 2	10.0	
2 - 4	7.5	
greater than 4	5.0	

AASHTO M-E

Study of LTPP Laboratory Resilient ModulusTest Data and Response Characteristics: Final Report

> FHWA-RD-02-051 A. Yau & H. Von Quintus B. Fugro-BRE, Inc.

Design Pamphlet

for the Determination of

Layered Elastic Moduli for

Flexible Pavement Design

in Support of the 1993 AASHTO

Guide for the Design of

Pavement Structures

PUBLICATION NO. FHWA-RD-97-077

SEPTEMBER 1997

H. Von Quintus & B. Killingsworth

U.S. Department of Transportation Federal Highway Administration

Research and Development Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296

BARKER & BRABSTON FAA-RD-74-199 (1975)

n+1: Lower Layer

Addendum to the Shell Pavement Design Manual (1985)

"Field measurements and theoretical considerations have indicated that the dynamic modulus of an unbound vase layer (E_2) must be related to the modulus of the subgrade (E_3)."

The following relationship is utilized:

 $E_2 = k * E_3$ $k = 0.2 * h_2^{0.45}$ 2 < k < 4 h_2 - thickness of the granular layer (mm)

	AVG. E _R , ksi			
T _{AC} , in.	E _{AC} (ksi):	100	500	1,400
1.5		33.5	31.4	29.5
3.0		30.4	26.4	23.3
5.0		25.0	21.5	18.9
8.0		21.7	18.2	16.5
$E_{R} = 9000 \ \theta^{0.33}$				
(9000 lbs.–80 psi)				

THOMPSON - 5th INT. CONF. DELFT - 1982

E (ksi) = $37.8 - (5.7 * [LOG ET^3 / 100])$ R^2 = 0.98 SEE = 0.9 ksi

ILLI-PAVE ANALYSES

* HMA SURFACE : + 4-6-8 INCHES + MODULUS = 500 ksi

* 10-INCH GRANULAR BASE : + Mr (psi) = 5000 * θ^0.5 + Φ = 45°

* SUBGRADE SOIL + SOFT: ERi = 3 ksi / Qu = 13 psi + MEDIUM: ERi = 7.7 ksi / Qu = 23 psi + STIFF: ERi = 12.3 ksi / Qu = 33 psi

* LOADING: 9 kips @ 80 psi (Typical FWD)

SUBGRADE & HMA THICKNESS EFFECTS

HMA (ins)	SUBGRADE ERi (ksi)	SURFACE DEFLECTION (mils)	BASE MOD MID-PT/AVERAGE (ksi)	THETA* (psi)
4	SOFT/3	30.3	18.4/19.3	14.9
4	MEDIUM/7.7	23.7	22/22.5	20.2
4	STIFF/12.3	20.1	23.2/23.6	22.2
6	MEDIUM/7.7	17.2	17.6/17.4	12.4
8	MEDIUM/7.7	13.4	14.6/14.8	8.5

* THETA IS FOR THE AVERAGE BASE MODULUS

OFFSET EFFECTS / SOFT SUBGRADE (4-inch HMA)

OFFSET (inches)	MID-PT Modulus (ksi)	THETA - Ə (psi)
0-6	18.4	13.5
9	16.8	11.3
12	14.3	8.2
15	12.2	6
18	12	5.8
22	11.1	4.9
26	9.5	3.6
31	8.2	2.7
36	7.1	2
42	6.3	1.6

BOTH MODELS CAPTURE THE STRESS HARDENING EFFECT

THETA: $M_R = K1^*\Theta^{K2}$ UZAN: $M_R = K1^*\Theta^{K2} * (6_D)^{K3}$

MATERIAL NC DOT DATA	R ² Theta Model	R ² Uzan Model
1	0.992	0.998
2	0.998	0.999
3	0.993	0.999
4	0.992	0.998
5	0.994	0.994
6	0.996	0.999
7	0.996	0.998
8	0.994	0.994
9	0.992	0.994
10	0.989	0.989

HMA MODULUS

* E_{HMA} IS INFLUENCED BY TIME OF LOADING AND TEMPERATURE
* MUST BE CONSIDERED IN M-E PAVEMENT DESIGN!!
* EXTENSIVE PAST R&D ON THE ISSUE
* RECENT FHWA PUBLICATION IS AN EXCELLENT REFERENCE

LTPP Computed Parameter: Dynamic Modulus

PUBLICATION NO. FHWA-HRT-10-035

SEPTEMBER 2011

Nichols Consulting Engineers North Carolina State University Y. Richard Kim et al

US. Department of Transportation Federal Highway Administration

Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike <u>McLean, V</u>A 22101-2296

*** NEURAL NETWORKS**

* 3-D FINITE ELEMENT (COMPUTATIONALLY INTENSIVE)

* AXYSYMETRIC FINITE ELEMENT (STRESS DEPENDENT Es) (FAILURE CRITERIA) (USE SUPERPOSITION) AVAILABLE IN EARLY VERSION MEPDG)

* ELASTIC LAYER PROGRAMS (MANY OPTIONS / MEPDG – JULEA)

STRUCTURAL MODELS

ADDITIONAL DESIRABLE STRUCTURAL MODEL FEATURES

ANISOTROPY

RESIDUAL STRESSES

TRANSFER FUNCTIONS CRITICAL FACTORS!!!

SUBGRADE RUTTING

SUBGRADE TRANSFER FUNCTIONS

•SUBGRADE VERTICAL STRAIN

•SUBGRADE STRESS RATIO (SSR) SSR= DEV STRESS / Q_U

TOWNSEND-CHISOLM WES - NOV. 1976 Vicksburg Buckshot Clay

VERTICAL STRAIN CRITERIA $\varepsilon = L (1/N)^m$

AGENCY	L	m	RD (INS)
AI	1.05*10 ⁻²	0.223	0.5
SHELL			PSI / 2.5
50%	2.8*10 ⁻²	0.25	
85%	2.1*10 ⁻²	0.25	CROW
95%	1.8*10 ⁻²	0.25	
TRL/1132 (85%)	1.5*10 ⁻²	0.253	0.4

MIKE NUNN / TRL 615 (2004)

"Therefore it is proposed to drop the subgrade strain criterion and rely on a single criterion that limits the flexural stress or strain at the underside of the base layer to a permissible level to achieve the required pavement life."

NOTE: The procedure utilizes "foundation classes" and "equivalent elastic half spaces" to characterize the composite foundation support.

CL 1 =/>50 MPa (7.3 ksi) CL 2 =/> 100 MPa (14.6 ksi) CL 3=/>200 MPa (29 ksi) CL 4 =/> 400 MPa (58 ksi)

Transfer Functions: Subgrade Rutting-Vertical Strain Design Criteria 1.5 COMPRESSIVI $E_{s} = 30,000 PSI$ 1.0 15,000 0.9 9,000 SUBGR STRAIN 0.8 VERTICAL 3,000 0.7 Ч 0.6 1,000 2,000 5,000 10,000 20,000 **ANNUAL STRAIN REPETITIONS** (20 YEAR LIFE) $\left(\frac{0.000247 + 0.000245 \times \log_{10}(E_R)}{0.0658 \times E_R}\right)^{0.0658 \times E_R}$ $N = 10000 \times$

 \mathcal{E}_{v}

(Adapted from Barker and Brabston, 1975)

CURRENT FAA SUBGRADE STRAIN CRITERIA

C < 12,100: C = $(0.004/\epsilon_V)^8.1$ C > 12,100: C = $(0.002428/\epsilon_V)^14.21$

SUBGRADE STRESS RATIO (SSR)

SSR = SUBGRADE DEVIATOR STRESS / Q

Transfer Functions: Subgrade Rutting-SSR

Transfer Functions: Subgrade Rutting-SSR

Permanent Deformation vs. SSR

Transfer Functions: Subgrade Rutting-SSR

SSR General Guidelines

UNIVERSITY OF IL R&D

Damage Potential	Low/Acceptable	Limited	High
<i>SSR</i>	0.5 / 0.6	0.6 to 0.75	> 0.75

WES: BETA – COVERAGE – SSR RELATIONS

C: COVERAGES SSR: SUBGRADE STRESS RATIO

LOG (BETA)=((1.7782 + (0.2397* LOG C))/ ((1 + (0.5031 * LOG C))

BETA = (3.14 * SUBGRADE VERTICAL STRESS) / CBR

CBR~ Q_{II} (psi) / 4.5

SSR= SUBGRADE VERTICAL STRESS / Q

THUS: SSR = BETA / 14.1

COVERAGES	BETA	SSR
100	13.34	0.946
1,000	9.89	0.701
10,000	8.10	0.574
20,000	7.72	0.548
50,000	7.30	0.518
100,000	7.02	0.498

HIGH ESAL PAVEMENTS •SUBGRADE RUTTING – NORMALLY NOT A PROBLEM

•"WORKING PLATFORM" – ESSENTIAL FOR PAVING!!!!!

GRANULAR MATERIAL RUTTING MINIMUM HMA "COVER THICKNESS" MEPDG RUTTING MODEL

GRANULAR MATERIALS

Permanent Deformation Models

SYNTHESIS 445

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

NCHRP Synthesis 445 (Tutumluer - 2013)

Practices for Unbound Aggregate Pavement Layers

A Synthesis of Highway Practice

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

APPENDIX E Review of Current Permanent Deformation Models Typical Model Forms $\varepsilon_{p} = a + b(LOG N)$ $\varepsilon_{\rm p} = A N^{\rm b}$ **Ullidtz Model** $\varepsilon_{p} = a(\sigma_{d}/p_{0})N^{c}$

Tseng and Lytton (1989) presented a three-parameter permanent deformation model to predict the accumulation of permanent deformation through material testing. The parameters were developed from the laboratory established relationship between permanent strains and the number of load applications. The curve relationship is expressed as follows:

$$\varepsilon_a = \varepsilon_0 e^{-\left(\frac{\rho}{N}\right)^{\beta}}$$

Where ε_a is the axial permanent strain; *N* is the number of load applications, ε_0 , β , and ρ are material parameters that are different for each sample, and are determined based on the water content, resilient modulus, and stress states for base aggregate and subgrade soils through multiple regression analyses.

Basic Form for MEPDG TSENG & LYTTON ASTM STP 1016 (1989)
Pavement ME Rutting Damage Model

$$\delta_a(N) = \beta_1 \left(\frac{\varepsilon_0}{\varepsilon_r}\right) e^{-\left(\frac{\rho}{N}\right)^{\beta}} \varepsilon_v h$$

 $\delta_a(N)$ = Permanent deformation corresponding to N load applications

- = Field calibration factor
- ε_0 , ρ = Material properties

= Resilient strain from lab tests to determine material properties

- = Vertical resilient strain computed for sublayer
- = Sublayer thickness

 β_1

 \mathcal{E}_r

 \mathcal{E}_{V}

h

Framework for Improved Unbound Aggregate Base Rutting Model Development for M-E Pavement Design

93rd Annual Meeting of the Transportation Research Board

Liang Chern Chow Debakanta (Deb) Mishra Erol Tutumluer

University of Illinois at Urbana-Champaign

Pavement ME Rutting Damage Model

$$\delta_a(N) = \beta_1 \left(\frac{\varepsilon_0}{\varepsilon_r}\right) e^{-\left(\frac{\rho}{N}\right)^{\beta}} \varepsilon_v h$$

- = Field calibration factor
- ε_0 , ρ = Material properties

= Resilient strain from lab tests to determine material properties

No

stress

state!

- = Vertical resilient strain computed for sublayer
- = Sublayer thickness

 $f(N, \text{thickness}, M_R, W_c, \varepsilon_r)$

 β_1

 \mathcal{E}_r

 \mathcal{E}_{V}

h

Aggregate Shear Strength Properties

	Cohesion		Friction Angle	Compaction
Label	С		f	Water Content
	psi	kPa	degree	%
Material G1	12.4	85.1	50	$\omega_{opt} \pm 0.1$
Material G2	8.6	59.4	45	$\omega_{opt} \pm 0.8$
Material B	0.2	1.1	51	$\omega_{opt} \pm 0.2$
Material L	0.3	2.4	45	$\omega_{opt} \pm 0.1$

Shear Stress Ratio (SSR) Concept

Repeated Load Triaxial Testing for Permanent Deformation Characterization

Specimen Preparation and Setup

University of Illinois – FastCell

Test Protocol

- Single-stage loading permanent deformation tests
 - 10,000 cycles at SSR = 25%
 - 10,000 cycles at SSR = 50%
 - 10,000 cycles at SSR = 75%
- Confining pressure = 34.5 kPa (5 psi)
- 150 mm × 150 mm specimen at OMC and MDD conditions

Permanent Deformation Test Results

Development of Improved Rutting Model

$$\boldsymbol{\varepsilon}_p = A (N)^B (\boldsymbol{\sigma}_d)^C (\boldsymbol{\tau}_f / \boldsymbol{\tau}_{max})^D$$

A, B, C, D = Regression parameters ε_p = Permanent strain N = Load cycle σ_d = Applied stress τ_f = Applied shear stress τ_{max} = Shear strength at failure

STRENGTH PARAMETERS ARE IMPORTANT FACTORS IN PREDICTING PERMANENT DEFORMATION OF GRANULAR MATERIALS!!!!

COMPLICATING FACTORS

- STRENGTH INCREASE WITH LOADING
 - STRESS HISTORY EFFECTS

SHEAR STRENGTH INCREASE WITH REPEATED LOADING DENSE GRADED CRUSHED GRAVEL BASE Thompson & Smith (TRR 1278)

STRESS HISTORY: LOW TO HIGH

STRESS HISTORY: HIGH TO LOW

CUMULATIVE DAMAGE

AASHTO Ware – ADVISORY AASHTO Ware Pavement ME Design

"AASHTO has recently determined that the current model for unbound pavement materials underestimates the structural impact of high quality aggregate base."

"AASHTO encourages each licensing agency to calibrate and validate using local materials"

* NCHRP 01-53: Proposed Enhancements to Pavement ME Design: Improved Consideration of the Influence of Subgrade and Unbound Layers on Pavement Performance.

* NC DOT Project @ University of Illinois

HMA RUTTING

$$\Delta_{p(HMA)} = \varepsilon_{p(HMA)} h_{HMA} = \beta_{1r} k_z \varepsilon_{r(HMA)} 10^{k_{1r}} n^{k_{2r}\beta_{2r}} T^{k_{3r}\beta_{3r}}$$

where:

n

Т

kz

- $\Delta_{p(HMA)}$ = Accumulated permanent or plastic vertical deformation in the HMA layer/sublayer, in.,
- $\varepsilon_{p(HMA)}$ = Accumulated permanent or plastic axial strain in the HMA layer/sublayer, in/in.,
- $\varepsilon_{r(HMA)}$ = Resilient or elastic strain calculated by the structural response model at the mid-depth of each HMA sublayer, in/in.,
- $b_{(HMA)}$ = Thickness of the HMA layer/sublayer, in.,
 - = Number of axle-load repetitions.,
 - = Mix or pavement temperature, °F,
 - = Depth confinement factor,
- $k_{1r,2r,3r}$ = Global field calibration parameters (from the NCHRP 1-40D recalibration; $k_{1r} = -3.35412$, $k_{2r} = 0.4791$, $k_{3r} = 1.5606$), and β_{ir} , β_{2r} , β_{3r} ,= Local or mixture field calibration constants; for the global calibration,
 - these constants were all set to 1.0.

 $k_z = (C_1 + C_2 D) 0.328196^D$

 $C_{1} = -0.1039 (H_{HMA})^{2} + 2.4868 H_{HMA} - 17.342$ $C_{2} = 0.0172 (H_{HMA})^{2} - 1.7331 H_{HMA} + 27.428$

where:

D = Depth below the surface, in., and H_{HMA} = Total HMA thickness, in.

MEPDG HMA RUTTING MODEL

NATIONAL RUTTING MODEL

Figure 10. Comparison of Measured and Predicted Total Rutting Resulting from Global Calibration Process

NCHRP REPORT 719

Calibration of Rutting Models for Structural and Mix Design

> TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

"The objective of this research was to propose revisions to the HMA rut-depth transfer function in the MEPDG for consideration by NCHRP and the AASHTO Joint Task Force on Pavements."

Carl Monismith was the Panel Chairman.

TRANSFER FUNCTIONS CONSIDERED * Original MEPDG * Verstraten (σ_{DEV})

* Asphalt Institute - Modified Leahy (σ_{DEV} and $\epsilon_{v})$

WesTrack
 (shear strain and stress)

TRANSFER FUNCTION	R ²	S _e – in.	S _e / S _y
MEPDG	0.583	0.1085	0.665
Modified Leahy	0.699	0.1045	0.611
WesTrack	0.712	0.091	0.585

"With proper calibration, all four transfer functions accurately simulated the evolution of AC pavement rutting, and there were no statistically or practically significant differences among results obtained with the four functions. All of the transfer functions were calibrated to provide reasonable predictions of rut depth."

REASONABLE PREDICTIONS ???

MEPDG DESIGN CRITERIA Interstate: 0.40 in. Primary: 0.50 in. Others(< 45 mph): 0.65 in.

HMA RUTTING

*MATERIALS SELECTION (AGGREGATES – ASPHALT)

> *MIXTURE DESIGN (SUPERPAVE)

***CONSTRUCTION QC/QA**

RUT RESISTANT !!!

HMA FATIGUE

NATIONAL HMA FATIGUE MODEL

Figure 11 Comparison of Cumulative Fatigue Damage and Measured Alligator Cracking Resulting from Global Calibration Process

AASHTO TP 8-94

Standard Test Method for Determination of the Fatigue Life of Compacted HMA Subjected to Repeated Flexural Bending

FATIGUE DESIGN

- Tensile Strain at Bottom of Asphalt
- Tensile Strain in Flexural Beam Test
 Other Configurations

FATIGUE TESTING

Tensile Strain in Flexural Beam Test
 Other Configurations

- 10 Hz Haversine Load, 20° C, Controlled Strain

STIFFNESS CURVE

LABORATORY ALGORITHM

AC FATIGUE

FATIGUE ALGORITHMS $N_f = K1(1/\epsilon)^{K2}$

AASHTO MEPDG FORMAT $N_f = 0.00432^* k_1^* C(1/\epsilon)^{k_2} (1/E_{HMA})^{k_3}$ **K**₁ - HMA Thickness Factor $C - Mix Factor (V_b \& V_a)$ **Beta Factors - Calibration** (k2 = 3.9492 / k3 = 1.281)

IDOT HMA FATIGUE DATA SUMMARY 84 MIXES

> N = K1 (1/ε)^{K2} Minimum K2: 3.5 90% K2: 4.0 Average K2: 4.5

OTHER STUDIES

NO "UNIQUE"

HMA FATIGUE ALGORITHM !!!!

IMPORTANT ISSUE FOR HMA OVERLAY DESIGN !!!!

REMAINING LIFE !!!!

FATIGUE ENDURANCE LIMIT

PERPETUAL PAVEMENT DESIGN

CRITERIA:

HMA CUMULATIVE FATIGUE DAMAGE WILL NOT OCCUR

• PERIODIC MILL-FILL

Monismith & McLean

"Technology of Thick Lift Construction: Structural Design Considerations"

1972 AAPT Proceedings

70 Micro-Strain Endurance Limit!!

70 Micro Strain Test

FATIGUE ENDURANCE LIMIT

* Damage and Healing Concepts and Test Data Support a Strain Limit (the FEL) Below Which Fatigue Damage Does Not Accumulate

• FEL Is Not The Same for All HMAs.

Carpenter – Uofl
21 HMAs / Range: 90 – 300 με/ AVG: 125

Michael Nunn "Long-Life Flexible Pavements" 8th ISAP Conference Seattle, WA - 1997

ASPHALT PAVEMENT ALLIANCE (2000)

"PERPETUAL PAVEMENTS"

Huddleston – Buncher – Newcomb

Design of long-life flexible pavements for heavy traffic

by M E Nam, A Brown, D Firsten and J C Michells

TRL Report 250 Nunn, Brown, Weston & Nicholls

Design of Long-Life Flexible Pavements for Heavy Traffic

http://www.trl.co.uk

"Design Principles for Long Lasting HMA Pavements"

Thompson & Carpenter

ISAP Symposium Design & Construction of Long Lasting Asphalt Pavements

> Auburn, AL June -2004

HMA FATIGUE

*Monismith and McLean ('72 AAPT)

FEL = ?????

K1 & K2 = ?????

CURRENT NCHRP RESEARCH

NCHRP 9-44 Developing a Plan for Validating an Endurance Limit for HMA Pavements (AAT- BONAQUIST - Completed)

NCHRP 9-38 Endurance Limit of HMA for Preventing Fatigue Cracking in Flexible Pavements (2010 – NCAT/AUBURN - RAY BROWN)

NCHRP 9-44A Validating an Endurance Limit for HMA Pavements: Laboratory Experiment and Algorithm Development (ASU –WITCZAK/MAMLOUK – et al) NCHRP REPORT - 762

* FEL IS NOT CONSTANT FOR A GIVEN HMA!!! * FEL VARIES WITH HMA MODULUS! (FEL SMALLER FOR HIGHER MODULUS) * REST PERIODS ARE HELPFUL (RP > 2.5 SECONDS)

HMA MODULUS RANGE – CHAMPAIGN, IL (10-INCH FULL-DEPTH) PER: NCHRP 9-44A (BEAM TESTING)

HMA MODULUS (ksi)	FEL: μ-STRAIN (RP – 1 SEC.)	FEL: μ-STRAIN (RP – 5 SEC.
300	46	122
600	37	102
1000	31	89
1500	27	80
2000	25	75
3000	21	66

NEW NCHRP PROJECT: 09-59

Binder Fatigue, Fracture, and Healing and Their Contribution to Hot-Mix Asphalt Fatigue Performance

IL PERSPECTIVE

* "HOTTEST MONTH" HMA MODULUS IS PROBABLY ADEQUATE FOR "PRACTICAL" PP DESIGN

* CRITICAL INPUT IS FEL FEL = ???

DESIGN RELIABILITY

RELIABILITY

STRUCTURAL RESPONSES $(\sigma - \epsilon - \Delta)$

PAVEMENT DISTRESS(ES)

UTILIZE VARIABILITY IN MEASURED RESPONSES TO CONSIDER RELIABILITY

THE ONLY STRUCTURAL RESPONSE THAT CAN BE CONVENIENTLY MEASURED ON A "LARGE SCALE" IS SURFACE DEFLECTION!!!

FWD - RWD - TSD

VARIABILITY IN A AND "BASIN SHAPE PARAMETERS"

AUPP (AREA UNDER PAVEMENT PROFILE)

 $\mathbf{SCI} = \mathbf{\Delta}_0 - \mathbf{\Delta}_{12}$

Δ

SOME SIGNIFICANT PARAMETERS

IDOT-FULL-DEPTH HMA

LOG ε_{HMA} = 1.53 LOG Δ_0 + 0.319 LOG SSR = 1.28 LOG Δ_0 - 2.21 (SSR = SUB DEV 6 / Q_U) LOG ε_{HMA} = 1.001 + 1.024 LOG (AUPP) Δ_0 : mils ε_{HMA} : micro-strain **IDOT-CONVENTIONAL FLEXIBLE PAVTS** LOG ϵ_{HMA} = 1.113 LOG Δ_0 + 0.91 LOG SSR = 1.67 LOG Δ_0 - 2.88 $(SSR = SUB DEV 6 / Q_{II})$ LOG ϵ_{HMA} = 0.999 + 1.014 LOG (AUPP) Δ_0 : mils ε_{HMA}: micro-strain

SUMMARY & OBSERVATIONS

* M-E DESIGN HAS SIGNIFICANTLY PROGRESSED SINCE THE 60`S AND CONTINUES TO EVOLVE/IMPROVE

*PERFORMANCE PREDICTIONS ARE NOT "CONSISTENTLY SATISFACTORY"

* CALIBRATION IMPROVES PERFORMANCE PREDICTIONS

* NEED TO CAPITALIZE ON THE ATTRIBUTES OF FINITE ELEMENT MOELS

- + ACCOMMODATE STRESS DEPENDENT MODULI
- + UTILIZE FAILURE CRITERIA
- + ACCOMMODATE ANISOTROPY
- + CONSIDER RESIDUAL STRESSES
- + RECONCILE LAB-FIELD DISCREPANCIES

WE ARE PROGRESSING!!! KEEP UP THE GOOD WORK!!!

- REASONABLE EXPECTATIONS
- EVALUATE IMPACT OF STRESS HISTORY EFFECTS
- * DEVELOP IMPROVED CUMULATIVE DAMAGE MODELS

* DEVELOP IMPROVED TRANSFER FUNCTIONS (RUTTING – FATIGUE – FATIGUE ENDURANCE LIMIT)

* CONTINUE TO DEVELOP/REFINE MATERIAL CHARACTERIZATION PROCEDURES & MODELS (MODULUS – STRENGTH- FAILURE CRITERIA- FATIGUE)

THOMPSON'S PRINCIPLES

DO NOT:

- Measure with a micrometer;
- Mark with a grease pencil; and
- Cut with an axe!!!!!!

THANK YOU !!!!

JIM BROWN PAVEMENTS ENGINEER TX DOT

CHAIRMAN – AASHTO JOINT TASK FORCE ON PAVEMENTS

Proceedings - Workshop on Resilient Modulus Testing Oregon State University - March, 1989

"What is pavement design-pavement performance prediction reality? It would seem that only the naive, geniuses or the grossly egotistical would attempt to predict pavement performance. (The author -J. Brown- readily admits to the latter.) The pavement designer must forecast weather, traffic, and the results of a low bid contractor that uses such precise tools as bulldozers and draglines. The traffic forecast must include not only how many trucks but must include size of load and vehicle configurations, including tire pressures and types. **Construction materials include those processed by Mother Nature** (subgrades) and those semi-processed by the low bid contractor (base and subbase materials). The properties of these materials and the future loadings need to be known twenty-four hours a day, three hundred and sixty-five days per year for so far into the future that most pavement designers will retire before the design life has been reached!"