Acceptance Testing and Variability Impacts on Construction Operation

ISAP

June 4, 2014

Raleigh, North Carolina

Jon Epps
Texas A&M Transportation Institute
Texas A&M University

- Introduction
- Areas of Concern
- Use of Tests
- Economics
- Variability
- Sampling
- Testing
- Materials/Construction Variability
- Fabrication of Samples
- Summary

What We Need

Performance Related/Based Test

- Simple Concept
- Difficult to Accomplish
- Difficult to Implement
- Considerable Impact on Industry

History of Test Method Development

- Use Test from Another Industry
- We Have Used This Test for Years
- Develop Performance Indicator Tests
- Develop Tests that Measure "Fundamental" Properties

Ideal Test Attributes

- Measure Fundamental Property
- Related to Performance
- Duplicates
 - -Stress/Strain
 - —Time/Rate of Loading
 - Temperature

Ideal Test Attributes

- Equipment Costs Low
- Qualification of Technicians
 - Minimal
- Quick Results
 - -Sampling
 - Fabrication
- Testing
- Precision & Bias

- Introduction
- Areas of Concern
- Use of Tests
- Economics
- Variability
- Sampling
- Testing
- Materials/Construction Variability
- Fabrication of Samples
- Summary

Cycles to Failure

Cycles to Failure

- Introduction
- Areas of Concern
- Use of Tests
- Economics
- Variability
- Sampling
- Testing
- Materials/Construction Variability
- Fabrication of Samples
- Summary

How Test(s) Will Be Used

- Structural Design
- Mixture Design
- Acceptance (Quality)/Pay
- Economics

Who Will Use Test

- Owner (Public Agency)
- Contractor/Materials Supplier
- Research Community
- Forensics/Legal

- Quality Pavement (Performance)
- Quality Mixture (Performance)
- Economics
- Material Production Quality
- Mixture/Placement Quality
- Acceptance
- Pay

Why Contractor Interested

- Select Materials
- Mixture Design
- Structural Design
- Process Control/Quality Control

- Acceptance
- Pay
- Economics (Bid/Profit)

Contractor Interest

Type of Contract	Select Materials	Mix Design	Structural Design	Acceptance/ Pay	Bid/Profit	Performance
D – B – B	X			X	X	
D/B	X	X	X	X	X	
PPP IGAGS FIGURE	X	X	X	X	X	X

Material Supplier

- Raw Material Selection
- Manufacturing Process
- Process Control
- Quality Control
- Acceptance/Pay

Consultants

- Material Selection
- Structural Design
- Process Control/ Quality Control
- Acceptance

Research Community

- ImprovedPerformanceProduction
 - Materials
 - Mixtures
 - Structural Design
- Publications/Promotion/Tenure

Forensics/Legal

- Engineering Analysis
- Remove/Replace/Pay Reduction
- Responsible Party

How Test(s) Will Be Used

Mixture Design

Acceptance (Quality)/Pay

Economics

Structural Design

Thin

Tire Load

Asphalt Mixture < 4"

Flexible Base

Subgrade

Thick

Tire Load

Asphalt Mixture > 6""

Flexible Base

Subgrade

- Friction/Splash/Spray /Noise
- Permanent deformation
- Thermal cracking
- Water Susceptibility
- Stiffness
- High RAP/RAS
- Permanent deformation

- Fatigue resistance
- Water susceptibility

Mixture Design

- Material Selection
- Mixture Volumetric
- Mixture Properties

Mixture

- Stiffness
- Rutting
- Fatigue
- Thermal cracking
- Water susceptibility
- Aging

RAP/RAS/WMA Concern

Pavement Distress	RAP	RAS	WMA
Raveling	X	Х	
Bleeding			X
Rutting			X
Transverse Cracks	X	Х	
Longitudinal Cracks	X	Х	
Fatigue Cracks	X	Х	
Reflection Cracks	X	Х	
Water Sensitivity			X
Aging	Х	Х	

Acceptance (Quality)

- Material Properties
- Process Control
- Quality Control
- Quality Assurance
- Quality Management
- Pay

- Introduction
- Areas of Concern
- Use of Tests
- Economics
- Variability
- Sampling
- Testing
- Materials/Construction Variability
- Fabrication of Samples
- Summary

Economics

Materials

Material	50 Miles	100 Miles	
Asphalt Binder	0.40	0.80	
Aggregate	7.00	14.00	

\$/Ton of Mix

Mixture Design

Price of Asphalt	Percent Asphalt Binder Saved			
Binder \$/Ton	0.1	0.3	0.5	
400	0.40	1.20	2.00	
500	0.50	1.50	2.50	
600	0.60	1.80	3.00	

Structural Design

	Lane Miles			
Reduce Thickness Inches (mm)	10	20	30	
1 (25)	275	550	1,375	
2 (50)	550	1,100	2,750	
3 (75)	825	1,650	4,125	

Dollars - Thousands

Remove and Replace

Tons	Costs, Dollars
1,000	110,000
2,000	220,000
3,000	330,000

- Introduction
- Areas of Concern
- Use of Tests
- Economics
- Variability
- Sampling
- Testing
- Materials/ConstructionVariability
- Fabrication of Samples
- Summary

QC/QA and Variability

Variability = variability + variability + variability

$$S_{QC/QA}^2 = S_s^2 + S_t^2 + S_{m/c}^2$$

Sources of Variability

- Sampling random variation in sampling methods or procedures
- Testing random variation in testing performance and equipment

Sampling + testing variability = about 50% of the variation in test results

- Material random natural variation
- Construction variation inherent in production and construction methods

- Introduction
- Areas of Concern
- Use of Tests
- Economics
- Variability
- Sampling
- Testing
- Materials/ConstructionVariability
- Fabrication of Samples
- Summary

Effect of Number of Samples and Associated Risk

Number of	Contractor's	
Samples	Risk	Owner's Risk
(n)	(α)	(β)
1	0%	84%
1	5%	50%
4	0%	16%
4	5%	2.5%

Reported Test Result

- Single sample/size test result
- Single sample/multiple test result
- Multiple samples/multiple test result

$$S_n = \frac{S}{\sqrt{n}}$$

Number and Size of Samples ASTM Standards

- D3665 Random Sampling of Construction Materials
- E105 Probability Sampling of Materials
- E122 Choice of Sample Size to Estimate the Average Quality of a Lot or Process
- E141 Acceptance of Evidence Based on the Result of Probability Sampling

Stratified Random Sampling

Point of Sampling

- Asphalt
 - Plant Tank orMiddle 1/3 ofTruck Load
 - Bleed off & DiscardPrior to Sampling
 - -Sample & Seal

Point of Sampling

- Asphalt Content
 - Loose Plant, Truck, Mat (entire lift), Windrow, or Paver (auger) Samples, Cores
- Aggregate Gradation
 - Coldfeeds or hot bins
 - Extracted from HMA (loose samples or cores)
- Lab Compacted Volumetrics
 - Loose Plant, Truck, Mat (entire lift), Windrow,
 or Paver (auger) Samples

Effect of Sampling Location on Gradation Variability

Sample Splitting to Avoid Segregation

Coarse @ 3.79%ac Fine @ 5.21%ac

- Introduction
- Areas of Concern
- Use of Tests
- Economics
- Variability
- Sampling
- Testing
- Materials/Construction Variability
- Fabrication of Samples
- Summary

Mix Design Volumetric Criteria

- Superpave
 - Gmm_{i, d, m}, AV, VMA, VFA, DP
- Marshall
 - AV, VMA, VFA

Mixture Volumetrics

- All Specified Volumetric Properties Calculated from Measured Material Properties (AASHTO or ASTM Test Methods):
 - Asphalt Content (AC)
 - Asphalt Cement Specific Gravity (G_b)
 - Combined Aggregate Specific Gravity (G_{sb})
 - Bulk Specific Gravity of Compacted Mixture (G_{mb})
 - Theoretical Maximum Specific Gravity (G_{mm})
 - Amount of Material Passing the #200 Sieve (p200)

Question?

What are the <u>combined</u> effects of variability in material and mixture property measurements on calculated volumetric properties and optimum asphalt content selection?

Answer

Perform an analysis to find out

Analysis

- Show the effect of what is considered acceptable variability in G_b , G_{sb} , G_{mb} , G_{mm} measurements on mixture volumetrics for both within and between laboratory conditions
- 19mm Superpave mix design data
- ASTM single-operator and multilaboratory precision
- Monte Carlo Simulations
- Generate range of volumetric properties due to test method variability

Test Method Precision and Bias

- Precision Statements Account for Inherent Test Method Variability (uncontrollable random error)
- Single-operator, within lab, repeatability
- Multilaboratory, between lab, reproducability
- One-Sigma Limits (standard deviation, σ, 1S)
- Difference Two-Sigma Limits $\{(2\sqrt{2})\sigma, D2S\}$

Within Laboratory Precision

(Single Operator Precision)

Design	ations		Single Operator Precision			
AASHTO Method			Standard Deviation (1S)		Acceptable Range of Two Results (D2S)	
			AASHTO	ASTM	AASHTO	ASTM
T228	D70	Asphalt Cement Specific Gravity	0.0008	0.0008	0.0023	0.0023
T85	C127	Coarse Aggregate Specific Gravity	0.009	0.009	0.025	0.025
T84	C128	Fine Aggregate Specific Gravity	0.011	0.011	0.032	0.032
T166	D2726	Bulk Specific Gravity of Compacted Bituminous Specimens	*	0.0124	*	0.035
T209	D2041	Theoretical Maximum Specific Gravity of Bituminous Mixture	0.0040 (0.0064)	0.0040 (0.0064)	0.011 (0.018)	0.011 (0.018)

^{* - &}quot;Duplicate specific gravity results by the same operator should not be considered suspect unless they differ more than 0.02."

^{() -} supplemental procedure for mixtures containing porous aggregate conditions ("dryback procedure").

Between Laboratory Precision

(Multilaboratory Precision)

Design	nations		Multilaboratory Precision			
AASHTO Method	ASTM Method	Description	Standard (1	Deviation S)		e Range of esults 2S)
			AASHTO	ASTM	AASHTO	ASTM
T228	D70	Asphalt Cement Specific Gravity	0.0024	0.0024	0.0068	0.0068
T85	C127	Coarse Aggregate Specific Gravity	0.013	0.013	0.038	0.038
T84	C128	Fine Aggregate Specific Gravity	0.023	0.023	0.066	0.066
T166	D2726	Bulk Specific Gravity of Compacted Bituminous Specimens	*	0.0269	*	0.076
T209	D2041	Theoretical Maximum Specific Gravity of Bituminous Mixture	0.0064 (0.0193)	0.0064 (0.0193)	0.019 (0.055)	0.019 (0.055)

^{* - &}quot;Duplicate specific gravity results by the same operator should not be considered suspect unless they differ more than 0.02."

^{() -} supplemental procedure for mixtures containing porous aggregate conditions ("dryback procedure").

Monte Carlo Simulation Process

- Develop Probability Distributions from Mix
 Design Property Means and ASTM One Sigma Limits for *Each* Input Variable
 - eg.: G_{mb} and G_{mm}
- Repeatedly Sample the Input Distributions (G_{mb} and G_{mm}) and Calculate the Output Variable to Generate an Output Distribution
 - eg.: %AV
- 1000's of iterations

Monte Carlo Simulation

Summary Plots

Within Laboratory Air Voids

Between Laboratory Air Voids

Summary and Conclusions

"Acceptable" Variability Associated with the Measurement of the Properties Required to Determine HMA Volumetrics can Have a Significant Impact on Calculated Volumetric Properties

Summary and Conclusions

Within Laboratory Test Method Variability
 May Lead to Differences in AV and VMA of
 1.0+% for Any Given Mix Design

 These Differences Translate into Potential Differences of 0.7% in Optimum Asphalt Content Selection

Summary and Conclusions

Between Laboratory Test Method Variability May Lead to Differences in AV and VMA of over 2.0% for Any Given Mix Design

These Differences Translate into Potential Differences of Over 1.0% in Optimum Asphalt Content Selection

- Introduction
- Areas of Concern
- Use of Tests
- Economics
- Variability
- Sampling
- Testing
- Materials/Construction Variability
- Fabrication of Samples
- Summary

PWL and PD Concept

 $PWL = 100 - (PD_U + PD_L)$

In Terms of Area of the Distribution

Percent within Limits

rget

Target Value	5.0	
Limits	± 0.4	taı

Lot	X	S	PWL
1	5.0	0.20	96
2	4.8	0.20	84

Typical Variability

Property	Standard Deviation(s)
Asphalt Content, %	0.25
% pass 4.75 mm, %	3.0
% pass 2.36 mm to 0.15 mm, %	2.0
% pass 0.075 mm, %	0.7
Air Voids, %	1.0
VMA, %	1.5
VFA, %	5.0

- Introduction
- Areas of Concern
- Use of Tests
- Economics
- Variability
- Sampling
- Testing
- Materials/ConstructionVariability
- Fabrication of Samples
- Summary

Fabrication of Samples

- Lab Mixed-Lab Compacted
 - Mixture Design
 - Structural Design
 - Predict Performance
- Field Mixed Lab Compacted
 - Structural Design?
 - Predict Performance?
- Field Mixed-Field Compacted
 - Acceptance/Pay
 - Structural Design
 - Predict Performance

Compaction

Laboratory

- Plunger
- Impact
- Kneading
- Gyratory
- Slab

Conditioning

- Construction Hardening
- Short Term
- Long Term

- Introduction
- Areas of Concern
- Use of Tests
- Economics
- Variability
- Sampling
- Testing
- Materials/ConstructionVariability
- Fabrication of Samples
- Summary

What We Need

Ideal Test Attributes

- Measure Fundamental Property
- Related to Performance
- Duplicates
 - -Stress/Strain
 - —Time/Rate of Loading
 - Temperature

Ideal Test Attributes

- Equipment Costs Low
- Qualification of Technicians
 - Minimal
- Quick Results
 - -Sampling
 - Fabrication
- Testing
- Precision & Bias

Cycles to Failure

How Test(s) Will Be Used

- Structural Design
- Mixture Design
- Acceptance (Quality)/Pay
- Economics

Who Will Use Test

- Owner (Public Agency)
- Contractor/Materials Supplier
- Research Community
- Forensics/Legal

Contractor Interest

Type of Contract	Select Materials	Mix Design	Structural Design	Acceptance/ Pay	Bid/Profit	Performance
D – B – B	X			X	X	
D/B	X	X	X	X	X	
PPP ICAGS ARIVI	X	X	X	X	X	X

Mixture Design

Price of Asphalt	Percent Asphalt Binder Saved				
Binder \$/Ton	0.1	0.3	0.5		
400	0.40	1.20	2.00		
500	0.50	1.50	2.50		
6000	0.60	1.80	3.00		

Structural Design

	Lane Miles			
Reduce Thickness Inches (mm)	10	20	30	
1 (25)	275	550	1,375	
2 (50)	550	1,100	2,750	
3 (75)	825	1,650	4,125	

Dollars - Thousands

Remove and Replace

QC/QA and Variability

Variability = variability + variability + variability

$$S_{QC/QA}^2 = S_s^2 + S_t^2 + S_{m/c}^2$$

Monte Carlo Simulation

Within Laboratory Precision

(Single Operator Precision)

Designations			Single Operator Precision			
AASHTO ASTM Method Method		Description	Standard Deviation (1S)		Acceptable Range of Two Results (D2S)	
			AASHTO	ASTM	AASHTO	ASTM
T228	D70	Asphalt Cement Specific Gravity	0.0008	0.0008	0.0023	0.0023
T85	C127	Coarse Aggregate Specific Gravity	0.009	0.009	0.025	0.025
T84	C128	Fine Aggregate Specific Gravity	0.011	0.011	0.032	0.032
T166	D2726	Bulk Specific Gravity of Compacted Bituminous Specimens	*	0.0124	*	0.035
T209	D2041	Theoretical Maximum Specific Gravity of Bituminous Mixture	0.0040 (0.0064)	0.0040 (0.0064)	0.011 (0.018)	0.011 (0.018)

^{* - &}quot;Duplicate specific gravity results by the same operator should not be considered suspect unless they differ more than 0.02."

^{() -} supplemental procedure for mixtures containing porous aggregate conditions ("dryback procedure").

